

Quantum correlations II

Wladyslaw Adam Majewski

Instytut Fizyki Teoretycznej i Astrofizyki, UG
ul. Wita Stwosza 57, 80-952 Gdańsk, Poland;

IFTiA Gdańsk University – Poland

- The purpose of this lecture is to review some of the standard facts from probability theory as well as to present the general form of two point (classical) correlation function.
- We begin with basic definitions:
- σ -algebra:

Definition 1. *Let Ω be a set. \mathcal{F} is a σ -algebra if $\mathcal{F} \subset 2^\Omega$ and*

1. $\Omega \in \mathcal{F}$,
2. if $A \in \mathcal{F}$ then $\Omega \setminus A \in \mathcal{F}$,
3. if $A_i \in \mathcal{F}$ for $i = 1, 2, \dots$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

The pair (Ω, \mathcal{F}) is called a measure space.

where 2^Ω denotes the family of all subsets of Ω .

- **Definition 2.** *A probability measure p on (Ω, \mathcal{F}) is a function $p : \mathcal{F} \rightarrow [0, 1]$ such that*
 1. $p(\Omega) = 1$
 2. $p(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} p(A_i)$ *if $A_i \in \mathcal{F}$ for $i = 1, 2, \dots$, and $A_i \cap A_j = \emptyset$ for $i \neq j$.*
- and finally **the basic concept of this lecture:**
- **Definition 3.** *A probability space is a triple (Ω, \mathcal{F}, p) where Ω is a space (sample space), \mathcal{F} is a σ -algebra (a family of events), and p is a probability measure on (Ω, \mathcal{F}) .*

- **Remark 4.** *In probability theory, an “elementary event” is considered as the principal undefined term. Intuitively speaking, an elementary event has the meaning of the possible outcome of some physical experiment.*
- To illustrate these definitions we give:
- **Example 5.** *Discrete probability space.*
Let Ω be a countable (finite) set. Let us take $\mathcal{F} = 2^\Omega$. We put, for $A \subset \Omega$, $p(A) = \sum_{\omega \in A} q(\omega)$, where $q(\omega) \in [0, 1]$, $\omega \in \Omega$, are numbers such that $\sum_{\omega \in \Omega} q(\omega) = 1$.
 (Ω, \mathcal{F}, p) is a probability space.
- The last statement can be easily checked.

- Our next example is:

- **Example 6.** *Continuous probability space.*

*To be specific we put $\Omega = [0, 1] \subset \mathbb{R}$, \mathcal{F} to be a σ -algebra of Borel sets \mathcal{B} in $[0, 1]$, and λ to be the Lebesgue measure.
 $(\Omega, \mathcal{F}, \lambda)$ is a probability space.*

- Borel sets are defined as the σ -algebra generated by open sets.
- Again, it is an easy exercise to check the above statement.
- The notion of stochastic variable can be considered as a counterpart of a (classical) observable.
- **Definition 7.** *Let (Ω, \mathcal{F}, p) be a probability space. A measurable, real valued function $f : \Omega \rightarrow \mathbb{R}$ is called a stochastic variable.*

- To speak about *correlations*, it is convenient to begin with the opposite notion - with the notion of *independence*.
- **Definition 8.** *Let (Ω, \mathcal{F}, p) be a probability space. We say that two events $A, B \in \mathcal{F}$ are **independent** if*

$$p(A \cap B) = p(A)p(B) \quad (1)$$

More generally, the events A_i , $i = 1, \dots, n$ in \mathcal{F} are independent if

$$p(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) = \prod_{j=1}^k p(A_{i_j}) \quad (2)$$

for every $k = 1, \dots, n$ and i_1, \dots, i_k such that $1 \leq i_1 < i_2, \dots, i_k \leq n$.

- The concept of independence can be extended for stochastic variables:
- We say that stochastic variables X_1, X_2, \dots, X_n are independent if and only if events $(X_i \in B_i), i = 1, \dots, n$, are independent where

$$(X_i \in B_i) \equiv \{\omega : X_i(\omega) \in B_i\} \quad (3)$$

for arbitrary Borel sets $B_i \subset \mathbb{R}$.

- We define an expectation value $E(X)$ of a stochastic variable X as

$$E(X) = \int X dp \equiv \int X(\omega) dp(\omega) \quad (4)$$

- We interpret $E(X)$ as the mean value of the stochastic variable X provided that the probability of events is given by the probabilistic measure p .

- **Definition 9.** Let two stochastic variables X, Y be given. Moreover, let their second moments be finite, i.e. $E(X^2), E(Y^2) < \infty$. We say that two stochastic variables X and Y are **uncorrelated** if

$$E(XY) = E(X)E(Y) \quad (5)$$

- It is easy an easy excercise to check that:

$$(E(XY) - E(X)E(Y))^2 \leq (E(X^2) - E(X)^2)(E(Y^2) - E(Y)^2) \quad (6)$$

- The following definition should be clear, *Halmos*:

- **Definition 10.** A *correlation coefficient* $C(X, Y)$ is defined as

$$C(X, Y) = \frac{E(XY) - E(X)E(Y)}{(E(X^2) - E(X)^2)^{\frac{1}{2}}(E(Y^2) - E(Y)^2)^{\frac{1}{2}}} \quad (7)$$

- Taking into account inequality (6), it is obvious that $C(X, Y) \in [-1, 1]$.
- If $C(X, Y)$ is equal to 0 then stochastic variables X and Y are *uncorrelated*.
- Further, if $C(X, Y) \in (0, 1]$, then X , Y are said to be *correlated* (positive correlated).
- Finally when $C(X, Y) \in [-1, 0)$, stochastic variables X and Y are said to be *anti correlated* (negative correlated).

- The above introduced notions for stochastic variables, independence and uncorrelatedness, are related to each other. Namely, *Halmos*:
- **Proposition 11.** *$(\Omega = [0, 1], \mathcal{F}, p)$ be a probability space. Assume that stochastic variables are independent and integrable. Then they are also uncorrelated.*
- However, these two notions are not equivalent. To illustrate, *Halmos*:
- **Example 12.** *Let $(\Omega = [0, 1], \mathcal{F}, \lambda)$ be the probability space given in Example 6. Define stochastic variables f and g as $f(x) = \sin 2\pi x$ and $g(x) = \cos 2\pi x$. Then the expectation value of $f \cdot g$ is given by $E(fg) = \int_0^1 \sin 2\pi x \cos 2\pi y dx = 0$. Hence, they are uncorrelated. On the other hand, let us define $D = [0, \epsilon)$ where ϵ is sufficiently small. $\lambda(\{x : \sin 2\pi x \in D\} \cap \{x : \cos 2\pi x \in D\}) = 0$ while $\lambda(\{x : \sin 2\pi x \in D\}) \neq 0$ and $\lambda(\{x : \cos 2\pi x \in D\}) \neq 0$. Therefore f and g are not independent (but they are uncorrelated!).*

- Relation between a measure and a state (*this will be essential for a quantization of probability*):
- Let E be a locally compact Hausdorff space.
- A positive Radon measure is a positive linear map $\phi : C_{\mathfrak{K}}(E) \rightarrow \mathbb{R}$ where $C_{\mathfrak{K}}(E)$ denotes the set of continuous functions with compact support, and ϕ positive means $\phi(f) \geq 0$ for any $f \geq 0$.
- A Borel measure is a measure defined on the σ -algebra generated by compact subsets of E such that the measure of every compact subset is finite.
- Let E be a locally compact space, μ be a positive (Borel) measure on E and f be a continuous function on E with a compact support.

- Consider the following map:

$$C_{\mathfrak{K}}(E) \ni f \mapsto \int f d\mu \in \mathbb{C}. \quad (8)$$

- Verify, that
 1. $\int (f + g) d\mu = \int f d\mu + \int g d\mu$
 2. $\int c f d\mu = c \int f d\mu$ for $c \in \mathbb{C}$
 3. $\int f d\mu \geq 0$ for $f \geq 0$
- In (8), each positive measure on E defines a positive linear form on $C_{\mathfrak{K}}(E)$.

- The converse implication is given by the Markov-Riesz-Kakutani theorem.

Theorem 13. *If φ is a linear, positive, continuous form on $C_{\mathfrak{K}}(E)$ then there exist a unique positive Borel measure μ on E such that*

$$\varphi(f) = \int_E f d\mu \quad f \in C_{\mathfrak{K}}(E). \quad (9)$$

If additionally E is compact and $\varphi(\mathbb{1}) = 1$ then μ is a probability measure. Consequently, normalized forms and probability measures are in 1 – 1 correspondence.

- Theorem 13 establishes a one-to-one correspondence between the positive Borel measures (in fact, regular positive Borel measures) and the Radon measures such that $\mu(E) = \|\mu\|$.

- The standard integral notation $\mu(f) = \int_E f d\mu$, $f \in C_{\mathfrak{K}}(E)$ implicitly identifies these concepts. Thus, in in sequel, *the term measure will be used interchangeably to denote them*.
- Assume additionally, temporary, that E is a compact space. $C_{\mathfrak{K}}(E) \equiv C(E)$ equipped with the supremum norm $\|f\| = \sup_{x \in E} |f(x)|$, where $f \in C(E)$, is a Banach space and the map (8) is continuous one (if $C(E)$ is considered as a Banach space).
- One can say even more: $C(E)$ can be furnished with an algebraic structure turning $C(E)$ into an abelian C^* -algebra with unit (in next lectures we will come back to this point!).
- Calling normalized forms (8) as states one gets a *one-to-one correspondence between a probability measure on E and the corresponding state!*

- Some more notation: we wish to explain the term *Riemann approximation property* which was used in the first lecture.
- For a Borel measure μ on a locally compact Hausdorff space E and a function $f \in C_{\mathfrak{K}}(E)$ we denote $\mu(f) = \int_E f d\mu$ (cf Theorem 13). Denote by $\mathfrak{M}(E)$ the collection of Radon measures on E . Let $\{\mu_n\}_{n=1}^{\infty} \subset \mathfrak{M}(E)$.
- We say that the net $\{\mu_n\}$ is weakly convergent to μ if $\mu_n(f) \rightarrow \mu(f)$ for any function $f \in C_{\mathfrak{K}}(E)$ (the vague topology)
- We will need the notion of Dirac's (point) measure δ_a , where $a \in E$.

- Such measures are determined by the condition:

$$\delta_a(f) = f(a) \quad (10)$$

- Finally, we say that a measure μ has a finite support if it can be written as a linear (finite) combination of δ_a 's.
- *see Bourbaki*

Theorem 14. *Any positive finite measure μ on E is a limit point, in the vague topology, of a convex hull of positive measures having a finite support contained in the support of μ .*

- **Remark 15.** 1. *This result will be not valid in the non-commutative setting. It is true only in the classical theory!*

- To describe (classical) composite systems we need the concept of product structures.
- Let $(\Omega_i, \mathcal{F}_i, p_i)$, $i = 1, 2$ be a probability space.
- The product of two probability spaces (which is also a probability space) is the Cartesian product

$$(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2, p_1 \times p_2),$$

where the product measure $p_1 \times p_2$ is defined as

$$p_1 \times p_2(A \times B) = p_1(A)p_2(B)$$

for all $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$. $\mathcal{F}_1 \times \mathcal{F}_2$ denotes the σ -algebra generated by sets of the form $\{A \times B; A \in \mathcal{F}_1, B \in \mathcal{F}_2\}$.

- Let χ_Y be an indicator function of a measurable set Y .
- Assume that for any $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$ functions $\chi_{A \times \Omega_2}$ and $\chi_{\Omega_1 \times B}$ are uncorrelated.
- Then one has

$$\mu(\chi_{A \times \Omega_2} \cdot \chi_{\Omega_1 \times B}) = \mu(\chi_{A \times \Omega_2})\mu(\chi_{\Omega_1 \times B}) \quad (11)$$

- The measures $\mu_1(A) = \mu(\chi_{A \times \Omega_2})$, $\mu_2(B) = \mu(\chi_{\Omega_1 \times B})$ are called the marginal measures.
- Consequently, if any two events give rise to uncorrelated indicator functions, for a measure μ on the product measurable (probability) space then $\mu = \mu_1 \times \mu_2$.

- *Classical composite systems.*
- In classical statistical mechanics, a system is described by its phase space Γ , a probability measure μ , and a one parameter family of measure preserving maps $T_t : \Gamma \rightarrow \Gamma$.
- The phase space Γ records the allowed collection of system coordinates and momenta. The measure μ is characterizing our knowledge about the system.
- Finally, the family of maps $\{T_t\}$, where either $t \in \mathbb{R}$ or $t \in \mathbb{R}^+$, is designed to describe a time evolution of the system.
- Suppose we have two such systems (Γ_i, μ_i, T_t^i) , $i = 1, 2$.
- We wish to form one bigger system consisting of these two given subsystems - thus we want to form a *composite* system.

- BUT, one should realize that there are three different types of independence; see *Streater*:
- 1. logical independence,
2. dynamical independence,
3. statistical independence.
- Logical independence means that we are implicitly assuming that the values allowed for the first component (so for Γ_1) do not depend on the values taken by the second component (so those in Γ_2). This leads to the conclusion that the allowed values for the composite system are given by the Cartesian product of its components, i.e. $\Gamma = \Gamma_1 \times \Gamma_2$. **From now on we make this assumption.**

- The dynamical independence means that the global evolution is described by the product of maps, i.e. $T_t = T_t^1 \times T_t^2$. The important point to note here is that this independence excludes any interaction between the two subsystems. **This kind of independence will not be assumed.**
- The last one, the statistical independence means that the global measure describing our knowledge about the system is a product measure.
- It is a simple matter to check that this independence is related to that described in the first part of this lecture.
- **We will not assume the statistical independence.**

- We arrived at: *a composite system is characterized by the triple $(\Gamma \equiv \Gamma_1 \times \Gamma_2, \mu, T_t)$, where the probability measure μ is defined on the Cartesian product of two measurable spaces $(\Gamma_1 \times \Gamma_2, \mathcal{F}_1 \times \mathcal{F}_2)$, and finally, T_t is a global evolution defined on Γ .*
- Classical correlation functions.
- Let us assume that Γ_1, Γ_2 are compact sets and we consider only continuous stochastic variables.
- Hence, a global (classical) observable is given by a function $f \in C(\Gamma_1 \times \Gamma_2)$ while an observable associated with a subsystem is given by $f_i \in C(\Gamma_i)$, $i = 1, 2$ respectively.

- There is the identification:

$$C(\Gamma_1 \times \Gamma_2) = C(\Gamma_1) \otimes C(\Gamma_2) \quad (12)$$

where on the right hand side of (12) \otimes stands for the tensor product, (more details on tensor products will be provided in a separate lecture!)

- Now we wish to consider a two point correlation function, where an observable f_i is associated with a subsystem i , $i = 1, 2$.
- Note, that quantum counterparts of such correlation functions are typical in Quantum Information Theory.
- To simplify the notation we will identify the function f_1 (defined on Γ_1) with the function $f_1 \otimes \mathbb{1}_{\Gamma_2}$ (defined on $\Gamma_1 \times \Gamma_2$); and analogously for f_2 .

- Let $f_i \in C(\Gamma_i)$, $i = 1, 2$ and consider functionals $\varphi(\cdot)$

$$\varphi(f_1 \otimes f_2) = \varphi(f_1 f_2) \equiv \varphi_\mu(f_1 f_2) \equiv \int_{\Gamma_1 \times \Gamma_2} f_1(q_1) f_2(q_2) d\mu \quad (13)$$

- Taking into account the weak-* Riemann approximation property

$$\begin{aligned} \varphi(f_1 f_2) &= \lim_{n \rightarrow \infty} \int_{\Gamma_1 \times \Gamma_2} f_1(\gamma_1) f_2(\gamma_2) d\mu_n \\ &= \lim_{n \rightarrow \infty} \int_{\Gamma_1 \times \Gamma_2} f_1(\gamma_1) f_2(\gamma_2) \left(\sum_n \lambda_n d\delta_{(a_{1,n}, a_{2,n})}^n \right) \end{aligned} \quad (14)$$

where $\delta_{(a,b)}$ stands for the Dirac's measure supported by (a, b) , $\lambda_n \geq 0$ and $\sum_n \lambda_n = 1$.

- for a point measure, one has

$$\delta_{(a,b)} = \delta_a \times \delta_b. \quad (15)$$

-

$$\begin{aligned}
 \varphi(f_1 f_2) &= \lim_{n \rightarrow \infty} \sum_n \lambda_n \int_{\Gamma_1} f_1(\gamma_1) d\delta_{a_{1,n}}^n(\gamma_1) \int_{\Gamma_2} f_2(\gamma_2) d\delta_{a_{2,n}}^n(\gamma_2) \\
 &= \lim_{n \rightarrow \infty} \sum_n \lambda_n \varphi_{\delta_{a_{1,n}}}(f_1) \varphi_{\delta_{a_{2,n}}}(f_2) \\
 &= \lim_{n \rightarrow \infty} \sum_n \lambda_n (\varphi_{\delta_{a_{1,n}}} \otimes \varphi_{\delta_{a_{2,n}}})(f_1 \otimes f_2)
 \end{aligned} \quad (16)$$

for any $f_i \in C(\Gamma_i)$, $i = 1, 2$.

- Consequently

$$\varphi_\mu(f_1 \otimes f_2) = \lim_{n \rightarrow \infty} \sum_n \lambda_n (\varphi_{\delta_{a_{1,n}}} \otimes \varphi_{\delta_{a_{2,n}}})(f_1 \otimes f_2) \quad (17)$$

for any $f_i \in C(\Gamma_i)$, $i = 1, 2$.

- **Corollary 16.** *For a classical case, any two point correlation function of bipartite system is the limit of a convex combination of product states.*
- This means that it is of very specific (separable form). We will see that it is not true for the quantum case.
- The important point to note here is that two point correlation function is the principal ingredient of correlation coefficient.